Frontend engineer

This assignment is meant to evaluate the React proficiency of full-time engineers. Your code structure should follow design best practices and our evaluation will focus primarily on your ability to follow good design principles and less on correctness and completeness of algorithms. During the face to face interview you will have the opportunity to explain your design choices and provide justifications for the eventually omitted parts.

⚠️ Do not mention 90 percent of everything or 90poe anywhere on the code or repository name.
⚠️ Do not copy any files from this repository

Time limits

The evaluation result of the test is not linked to how much time you spend on it.
Please DO NOT spend more than ~2 hours doing it, if you haven't complete the task simply submit as is.
Successful applications show us that ~2 hours are more than enough to cover all the evaluation points below.

Coding task

Your task is to write a simple React Application that renders list of react repositories in the table view of your choice or in the following manner:

 • <name> - 🌟 <stars> - 🍴 <forks>
 • react - 🌟 69012 - 🍴 12581
 • reselect - 🌟 7291 - 🍴 214
 • redux - 🌟 31705 - 🍴 6581
 • recompose - 🌟 5671 - 🍴 342
 ...

Repository name should be a link to the actual GitHub repo.

Constraints

- Use typescript
- Use react-hooks
- Feel free to use any boilerplate configuration as `create-react-app`
- Feel free to use any design framework you are familiar with (i.e. AntD)
- Do not leave any unused dependencies or scripts
- Do not mock API response in your repository

Nice to have

If you feel you have time to express yourself more here's the list of few points to guide you

- Pagination
- Flexible search
- Cover you code with tests as much as you can
- Dockerize it!

API

Use the Github Graphql API v4 to fetch the list of repos.

- [Docs](https://developer.github.com/v4/)
- [Explorer](https://developer.github.com/v4/explorer/)

Evaluation points

- use of community best practices
- use of clean code which is self documenting
- use of domain driven design
- tests for business logic
- clean and extendable project structure, usage of best practices
- use of css-in-js
- use of design frameworks
- use of code quality checkers such as linters and build tools
- use of git with appropriate commit messages
- documentation: README and inline code comments
- use of docker for building and integration test

Results

Please share a git repository with us containing your implementation.
